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Figure 1: 1 C the Light’s start-up graphics, depicting a large single eye

I C the Light: RAY MARCHING MY DREAMS

Rebecca Turner®

We implement a ray-marching renderer using the distance-estimation algorithms found in
papers by Hart et alB and Cranel with an eye on details and specifics, intended for read-
ers more unfamiliar with 3D vector graphics and related topics. Distance-estimating ray
marchers operate by computing an estimate of the distance to the object being rendered, al-
lowing complex or infinitely detailed mathematically-defined objects to be rendered. Github:
3999years/i-c-the-light

Figure 2: Renders of quaternion Julia sets produced by I C the Light

Direct questions, comments, and concerns to 537275€gmatl.con or by other means as directed on hecca.ood

Hart, J. C., Sandin, D. J., and Kauffman, L. H. (1989). Ray Tracing Deterministic 3-D Fractals. SIGGRAPH Comput. Graph. 23(3), 289—296.
doi:10.1145/74334.74363.

Crane, K. (2005). Ray Tracing Quaternion Julia Sets on the GPU. University of Illinois at Urbana-Champaign.
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Figure 3: 1 C the Light render T1484281708 — a sinusoidally-displaced
sphere.

1 How are 3D graphics generated?

How was the image in figure f made? How do com-
puters translate scene information — geometry, colors,
lighting, and so on — into an image?

Usually, computers create digital images (called ren-
ders) from scene information by simulating the universe
— or at least a small part of it, in a simplified manner.
Calculating the results of a fully-featured simulation of
the interactions of every particle and wave bouncing
throughout a virtual world might be interesting, but it
would be too slow and over-involvedt to be useful for
anything practical. Instead, a simulation may consist of
firing a burst of photons from a camera and measuring

their interactions with the geometry.

Therein lies the rub — given an arbitrary ray (an infinite
line originating from a point), how can its intersection
with the scene (an arbitrary collection of geometry) be
found?

Broadly speaking, there are two solutions. Ray trac-
ers solve discrete equations to find a formula for the

4 Could the reader imagine placing every speck of dirt by hand
just to conjure some soil?
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exact intersection between a primitivel and a scene —
consequently, ray tracers are limited to rendering com-
binations of the shapes their authors solved equations
for, usually spheres and triangles. Figure [ shows a ray-
traced image.

Figure 4: Aray-traced render of the Utah Teapot, a famous model created
in1975 by Martin Newell. Onthe left-hand side is a wireframe ren-
der, showing the individual triangles that are joined together to
form a whole object. On the right, a shading model and several
physical effects such as depth of field and ambient occlusion
have been added to make the teapot’s appearance more realis-
tic.

Second and more interestingly exist ray marchers, a
class of renderer that approximates the intersection of
a scene and a ray by using a function called a distance
estimator, or DE, that estimates a bound on the distance
from a point to a scene. Then, by marching along the
pre-determined ray in step sizes determined by the DE,
an intersection between a ray and a scene may be approx-
imated to arbitrary precision.B

Rather than calculate an exact intersection with a scene
in O(1) complexity? like a ray tracer, ray marchers es-
timate the directionless distance to the closest point in
the scene from any point in space in an unknown but
bounded complexity O(x), x < M, where M repre-
sents the maximum step count, a user-defined constant

5 The simplest form of a geometric object like a sphere or a single
triangle.

Read: With accuracy proportional to the reader’s patience for
sitting around waiting for a computer to generate an image.

7 The complexity class of an algorithm, represented in “big-O” no-
tation, describes the growth of the time the algorithm takes to
complete with relation to its input.

that determines the ray marcher’s accuracy and execu-
tion time. The maximum step-count of a ray-marcher is
analogous to the iteration count of a fractal; increasing
the step count decreases the error between the rendered
image and the true geometry. A ray-marched render is
shown in f.

Figure 5: A ray-marched render of a quaternion Julia set (described in
more detail in sections B3 and B:3-3). The important difference
between this image and a ray-traced render such as in figure A
is that the geometry is not defined as a collection of triangles
but with a mathematical formula (lim,,_, , g, = ’2’_1 +c # o).

Ray marching does not estimate the distance to the
scene along a ray, just the distance to the scene from
a point — this is why it’s called a directionless estimate.
It’s impossible to know from the distance estimate (DE)
alone if the ray being travelled upon is pointed in the
direction of the scene or not — until finished analysing
any given ray, no information about its potential inter-
section(s) are known.

Due to the lack of directionality in the distance estimate,
aray to march along must be predetermined, and a com-
plete image may be assembled by marching thousands

or millions of rays in a grid. Around 250,000-10 mil-

8 What’s an iteration count? See section f for an explanation.
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lion raysH are fired to render a scene — one or moreld
per pixel.

2  Why ray march?

Additionally, due to the lack of an exact intersection, ray
marchers can only approximate the boundary of a scene
and therefore have an unknown complexity class.

As such, faster and simpler ray tracers are used when-
ever possible, delegating ray marchers to enthusiast and
research circles.

Why, then, would anyone use the comparatively ineffi-
cient ray marching model? Generally, whenever defin-
ing a DE is easier than finding an intersection equation
(almost always) or when the surface of an object is un-
defined, such as in infinitely complex fractals.

And as for the reverse — if finding a DE is easier than
finding an intersection equation and ray marchers are
capable of rendering objects and shapes that ray tracers
are incapable of, why does anyone use ray tracers? First,
ray marchers are much slower; as previously stated, ray
tracers can calculate an intersection in O(1) time while
ray marchers take an unknown O(x) time, and in cases
where speed is critical (such as video games or animated
movies) the extra effort to optimize inputs so that they
are ray-traceable has massive speed benefits ] The
second notable reason that ray marchers aren’t more

9 These are normal ray counts and not unusually large — movies
like Pixar’s Finding Dory (2016) use “billions of individual light
rays per frame, with probably ten reflections and refractions in
each ray.”l

1 ray per pixel X 500 pixels wide X 500 pixels tall =
250,000 rays

4 rays per pixel X 1920 pixels wide X 1080 pixels tall =
10, 000, 000 rays

Such as with ssA A (super-sample anti-aliasing), a technique that
renders smoother images by rendering multiple points per pixel
and averaging them to avoid jagged edges.

And although progress has been made to make ray marchers
faster by Crand, Hart et all, and others, ray marchers are still
nowhere near as fast as ray tracers.

a Sciretta, P. (2016). How Unprecedented New Technology Made
It Harder to Produce ‘Finding Dory’. Retrieved from 5lashfilm]
com/the-tech-ot-finding-dory

widespread is that they simply aren’t that useful for
every-day applications of 3D graphics — although the
work of Benoit Mandelbrot and others in developing the
theory of fractals (more on that in section f) has been
important in developing a deeper understanding of the
natural world and creating digital approximations of it
(as in animated movies), it’s easier to adapt fractals to
fit the triangle-and-sphere worlds of ray tracers than it
is to convert entire rendering systems to incorporate ray
marchers natively.

3 How does ray marching work?

Humans discover the shape of the spaces we inhabit
through optical vision, where photons bouncing off of
objects enter our eyes, and our retina sense the regions
where photons cluster together to assemble a dark-and-
light image of the portion of the world in front of us —
a process very similar to ray tracing, where positions
of photon collisions are directly measured to render an
image. How, then, does a bat find its way through the
world, blindE and alone?

Bats use a technique referred to as echolocation,3 a sys-
tem akin to sONAR,M. When echolocating, bats emit
high-pitched tones and measure how long their echoes
take to return, detecting the distance to the nearest ob-

12 Although “The extent to which bats rely on vision [...] is un-

known, [ it is clear that their vision is perfectly adequate, albeit
“adapted for nocturnal vision”l and inferior to their echolocation
for detecting things such as insects in the dark B

'3 Layne, J. N. (1967). Evidence For The Use Of Vision In Diur-
nal Orientation Of The Bat Myotis Austroriparius. Animal Be-
haviour, 15(4), 409—415. doi:10.1016/0003-3472(67)90037- 1.

4 Sound Navigation And Ranging

b Boonman, A., Bar-On, Y., Yovel, Y., and Cvikel, N. (2013). It’s
Not Black or White — On The Range of Vision and Echolocation
in Echolocating Bats. Frontiers in Physiology, 4. doi:10.3389]
fphys.2013.00248

¢ Ibid.

4 Ibid.


slashfilm.com/the-tech-of-finding-dory
slashfilm.com/the-tech-of-finding-dory
https://dx.doi.org/10.1016/0003-3472(67)90037-1
https://dx.doi.org/10.3389/fphys.2013.00248
https://dx.doi.org/10.3389/fphys.2013.00248
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jects without using their eyes.l3 Echolocation is like
ray marching and the sonorous “pings” bats emit are
like a distance estimator — bats cannot directly see the
geometry of the spaces they inhabit, but can deduce it
by listening to the timing of echoes.

Ray marching requires a function D(p) that yields the
directionless distance to the scene from a point repre-
sented by the position vector p.

A distance estimation function can be as simple as
D(p) = ||p|| — r for a circle of radius r about the ori-
gin. Although the scene is outlined in accompanying
figures, this is solely for clarity — ray marching is used
to determine the locations of these boundaries, which
are not known beforehand.

Figure 6: The geometric visualization of a simple de of a 2d sphere. Un-
bounding volumes in figures are shown in red and geometry is
shown in black

First, a ray 7 to march along is chosen. We will attempt
to find the intersection of this ray and the scene, defined
as the set of points § that compose the object(s) to be
rendered. Remember, in a ray marcher, the scene is de-

'S This s, like any analogy, a simplification; the notable advantage
bats have is the possession of two ears, angled outward. Much
like humans, hearing in stereo (in two different directions with
two different listening devices) allows bats to discern the direc-
tionality of sounds, information they use in tandem with the
echo delays, and, yes, their eyes, to gain an extremely precise
awareness of their surroundings.!

¢ Ibid.

fined by a series of equations, as contrasted to ray trac-
ers, which define the scene as a list of points and their
connections.

() V

=4

Figure 7: Aray ¥ within a scene

Next, we place our “sampling position” s, at the origin
of 7, we may sample D(5) and draw an n-spherel of
radius D(5,). Hartrefers to these n-spheres as “unbound-
ing volumes” because they are a bound on the space not
inhabited by the scene. Because we know that the scene
is present nowhere inside the bounding volume, we may
move our sampling position distance D(5,) along 7 to
find a new sampling point that is equally guaranteed to
not be inside of the scene. If 7 is pointed towards the
scene, D(5,,) will decrease as we “march” along 7, until
we reach an acceptably small value of D(5,), at which
point we can declare the scene to be found at point 3,
and the process can be restarted with the next ray. If the
ray isn’t pointed towards the set, D(5,) will eventually

exceed a maximum allowable value 5, .

Figure 8: Aray F within a scene and the unbounding volumes used to find
its intersection with the scene

By repeating this process many times with many differ-
ent rays we may assemble a “point cloud” of the scene,
and by choosing enough rays we may render a complete
and contiguous image.

16 Where n corresponds to the dimensionality of the render space.
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A

"

Figure 9: Rays within a scene — the combination of all the intersections
between the rays and the scene comprises the data used by
the shading model to turn the series of equations into a visual
image. Note that only the first intersection between a ray and
the geometry will be logged and used for the render — as the
back sides of objects in a scene are occluded (not visible), they
may be safely ignored.

4 Previous Work

The whole field of 3D fractals owes itself to (On Quater
nions, or on a new System of Imaginaries in Algebram
an extension of the complex numbers into the fourth di-
mension. By constructing the same fractal equations
with quaternions instead of complex numbers and keep-
ing one component fixed, 3D Julia sets may be rendered.

For example, if z, represents the nth iteration of a 2D
complex Julia set and g, represents the ath iteration of
a 4D quaternion Julia set, then

SN

Z, =2, | +¢C (1)

S}

ag=9q, tc (2)

3
—_

Quaternions are also used in computer programs to de-
scribe rotation due to their low space requirements and
easy interpolation (among a few other pleasing quali-
ties).

Aside from fractals, infinitely complex shapes (more
on that in section ), and rotational coordinates, quater-
nions are used in studying “the Lorentz group, the gen-
eral theory of relativity group, the Clifford algebra, [...]
the conformal groupl, ...] crystallography, the kinemat-
ics of rigid body motion, the Thomas precession, the

7 Hamilton, W. R. (1844). On Quaternions; or on a new System
of Imaginaries in Algebra. The London, Edinburgh and Dublin
Philisophical Magazine and Journal of Science, 25.

special theory of relativity, classical electromagnetism,
the equation of motion of the general theory of relativity,
and Dirac’s relativistic wave equation.

Fractals posed an interesting problem to the field of ap-
plied mathematics: nobody knew what they looked like.
Fortunately, computers were rapidly gaining popularity,
and a machine capable of rapidly performing millions

of arithmetic operations was ideal for visualizing these

chaotic and complex new sets. In 1978, Brooks and Ma-
felski published the first-ever rendering of the Mandel-
brot set,[d an image so rudimentary it was printed as a

31 x 68 grid of asterisks, comprising just 2,108 bits of
data — less than two tweets’ worth!Ed

Although it’s possible to “brute force” a fractal by iterat-
ing over thousands of points in a 2D plane to render a 2D
fractal, doing the same in three dimensions is much less
practical, by an order of magnitude. How, then, may 3D
fractals be visualized?

In Generation and Display of Geometric Fractals in 24
DBY, Alan Norton proposed a method for determining
the surface of a fractal system. Norton brute-forces the
problem, starting with one known point on the surface
of the fractal (ex. 2+0i for the two-dimensional Mandel-
brot set) and successively boundary-testing neighbors
to find more border points. The duration of Norton’s
fractal renders using this method are not included in the
paper, implying they were embarrassingly large. In the
paper, Norton states that “[f]ractal surfaces are not dif-
ferentiable”® — although true, the non-existence of a

18 Girard, P. R. (1984). The Quaternion Group and Modern
Physics. European Journal of Physics, 5(1), 25.

9 Brooks, R. and Matelski, J. P. (1978). The Dynamics of 2-
Generator Subgroups of PSL(2, C). In Reimann surfaces and re-
lated topics: Proceedings of the 1978 stony brook conference
(pp- 65—67). Princeton University Press.

20 In the simplest possible case, where a tweet consists of 140 code-

points in the CO Controls and Basic Latin Unicode block (U+0000—

U+0007F) and no images or embedded media, a tweet contains

1,120 bits of data.

2 Norton, A. (1982). Generation and Display of Geometric Frac-

tals in 2-D. ACM SIGGRAPH Computer Graphics, 16. doi:10]

1145/965145.801263.

22 Norton, A. (1982). Generation and Display of Geometric Frac-

tals in 2-D. ACM SIGGRAPH Computer Graphics, 16. doi:[[0]

1145/965145.801263, p. 64.


https://dx.doi.org/10.1145/965145.801263
https://dx.doi.org/10.1145/965145.801263
https://dx.doi.org/10.1145/965145.801263
https://dx.doi.org/10.1145/965145.801263
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derivative for a function doesn’t imply that a derivative
cannot be estimated at a point, the discovery that fueled
John Hart’s research.

However, Norton’s method, which John Hart refers to
as boundary tracking, was too computationally complex
to be very useful. As such, a method faster than O(k")
for visualizing 3D fractals was badly needed, and so,
much like early calculators®d created calculus in order
to better estimate values of difficult-to-calculate func-
tions, new approaches were required.

In [The Science of Fractal Imagesea, six authors discuss
the finer points of fractals and their applications. No-
tably for ray marching, Heinz-Otto Peitgen provides
proofs for distance estimation functions of the Mandel-
brot and Julia sets in section 4.2.5, which may then be
extended into the fourth dimension to render 3D slices
of Quaternion fractals.

In 198q, John Hart published Ray Tracing Deferminis-
fic 3-D Fractalse3, where he used Peitgen’s distance es-
timators to create a ray marcher2d making use of “an
unusual construction called the unbounding volume’ &2,
a volume the object being rendered is guaranteed not to

23 The word choice here was a matter of some debate; both “calcu-
lographers” and “calculotitians” were considered, but ultimately
it was realized that the word for someone who performs calcu-
lus is simply a calculator I. Unfortunately, in the past 50 or 60
years, “calculator” has, much like “computer,” come to be asso-
ciated with electronics rather than humans. Alas, no terminol-
ogy more satisfactory can be found at the time of this writing,
although the reader may rest assured that this author will be on
the lookout for new terminology as it may arise.

24 Barnsley, M. F, Devaney, R. L., Fischer, Y., Mandelbrot, B. B.,
McGuire, M., Peitgen, H.-O., ..., and Voss, R. F. (1988). The
Science of Fractal Images. New York, NY, USA: Springer-
Verlag New York, Inc.

25 Hart, J. C., Sandin, D. J., and Kauffman, L. H. (1989). Ray Trac-
ing Deterministic 3-D Fractals. SIGGRAPH Comput. Graph.
23(3), 289-296. doi:10.1145/74334.74363.

26 The term “ray marcher” hadn’t been invented yet, so Hart called

his creation a “ray tracer”

27 Hart et al., [Ray Tracing Deterministic 3-D Fractald,” p. 289.

Thompson, S. P. (1910). Calculus made easy: Being a very-
simplest introduction to those beautiful methods of reckoning
which are generally called by the terrifying names of the differ-
ential calculus and the integral calculus. MacMillan and Co.

be in, estimated using the Hubbard-Doudy potential of
a shape. By “marching” a sampling point along a ray,
arbitrary volumes could be rendered, even unsolvable
but estimable (i.e., differentiable) systems like Julia sets.
This paper presents a reimplementation of Hart’s algo-
rithms.

Later, in 1994, Harf published a more detailed analysis
of ray marchers (now called “sphere tracers”), in The
Visual Computer, filled with more detailed mathemati-
cal proofs, rendering techniques and optimizations, dis-
tance functions, and analysis.

In 2003, Crang wrote a program to adapt Hart’s algo-
rithm to a GPUBS— because GPUS are ideal for doing the

same calculation to many similar entities and because

each pixel in a ray-marched image may be rendered in-
dependently, ray marchers are ideal for GPU implementa-
tions. Most notably, Crané ’s program is open-source2d
— Hart et. al. speak in vagueties, and although a sym-
bolic representation is undoubtedly valuable, a function

presented without a ballpark-range of valid inputs can

be aggravatingly difficult to implement. Where Hart de-
fined the normal vector N at a point {x, y, z) as

N,=D(x+¢€,y,z) — D(x—€,,2) 3)
Ny, =D(x,y+¢€,2)— D(x,y—€,2) 4)
N,=D(x,y,z+¢)— D(x,y,z —¢) (3

(where D(x,y,z) represents the distance estimate at
a point (x,y, z).), Crane defines an explicit value for
€: 0.0001. Crane suffered from the consequences of
Hart’s abstract paper as well, noting before defining sev-
eral constants that they “were determined through trial
and error and are not by any means optimal 8

5 Fractals

So far, Julia and Mandelbrot sets have been mentioned
several times without any real explanation as to what

28 Graphical processing unit, a specialized piece of hardware in

a computer specifically designed for graphical calculations —
contrast this with the all-purpose cpU, or central processing unit.

29 The source code is freely available online to examine and mod-
ify.

30 Crane, Ray Tracing Quaternion Julia Sets on the GPU, p. 8.


https://dx.doi.org/10.1145/74334.74363
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they are or why they’re useful or interesting. What is
a fractal, and what are the Julia and Mandelbrot sets in
specific?

5.1 Definition of a Fractal

A fractal is a shape of infinite detail, meaning that any
image of a fractal can always be resolved to greater de-
tail, and that the error between an approximation of a
fractal (such as a digital picture, a stone carving, or a
neatly-aligned list of numbers) and the fractal itself will
always exist.

Immediately, this poses some significant problems: hu-
man eyes cannot see infinite detail, human brains cannot
comprehend infinity, and there exists no possible way
to create an accurate representation of an object with
infinite detail, due to the small but finite size of atoms.
However, while this may initially seem like a drawback,
it turns out to be our panacea; because humans are in-
capable of perceiving infinite detail, there is no need to
create truly infinite detail when creating representations
of fractals — a representation that is simply “detailed
enough” will do just fine.

Approximations of fractals are usually created through
the repeated application of a rule to a starting object or
condition — each application of the rule is referred to
as an iteration.

A fractal may be as simple as a spiral, like the ones seen
in figure [[d. Note that although the radius approaches
0 as more and more iterations are rendered, the curve
will never reach the center point — as such, the true
form of this fractal (and all fractals) can only exist in a
theoretical sense.

Fractals like the Koch snowflake,BY as seen in figure [T,
are formed by repeated application of a rule to a start-
ing condition. This sort of recursive definition can be
formally specified with an L-system, named after Aristid
Lindenmayer who created them to describe the behavior
of plant growth B2 The Koch snowflake above may be de-

31 Weisttein, E. W. (2017). Koch snowflake. Retrieved from
mathworld.wolfram.com/KochSnowtlake.html.

32 Lindenmayer, A. (1968). Mathematical models for cellular in-
teractions in development i. filaments with one-sided inputs.
Journal of theoretical biology, 18(3), 280—299.

OO
0@

Figure 10: The first three iterations and the 20'" iteration of a fractal cre-
ated by curving a full turn around a center point while decreas-
ing the radius of the curve by 25%

fined with an alphabet of f (move forward), + (turn 60°

clockwise), and — (turn 60° counter-clockwise). Start-
ing from an axiom of f + +f + 4 f, the string is rewrit-
ten where f is replaced with f — f + +f — f, and this

repetition is repeated n times to generate the nth itera-
tion of the fractal. Although L-systems won’t be men-
tioned again in this paper, it’s important to emphasize

that all fractals can be formally specified with a set of
unambiguous rules and can always be refined to reveal

progressively finer details.

5.2 The Mandelbrot Set

The Mandelbrot set J( is defined to be the set of points
such that

c e C, Zg = 0,
L (©6)
imz, =z ,+cFoo = cel
n— oo n
Where calculating z to z,, is referred to as calculating the
n-th iteration of the fractal. (Confused about notation?

Check section for a glossary.)

In practical scenarios, calculating infinite iterations of
z,, is both impossible and impractical, as some points
don’t even converge in the limiting case, such as ¢ =
—1, where z,, = (=D"-1)/2, which alternates in a 2-state



mathworld.wolfram.com/KochSnowflake.html

I C the Light: RaAY MARCHING My DrREAaMS , Rebecca Turner 9

) <

AR

Figure 11: The first four iterations of the Koch Snowflake, a 1904 fractal
proposed by Helge von Koch

orbitBd between 0 and —1 (although it should be noted
that as co # DNE, —1 € Jl despite the lack of a limit).

All values of ¢ € Jl will cause z,, to fall into a pattern
of orbits or converge to a limit.

See a visualization of the Mandelbrot set in figure 2.
Perhaps notably, no points that are not included in a pre-
vious iteration of the set are included in the next iteration

of the set; that is, no points are erroneously excluded

through the approximation.

However, it may be proven that no values of ¢ such that

|c] > 2 exist, simplifying the limit from lim,_, , # o

to z, < 2. As n is not specified here, it may be arbitrar-
ily large; because points closer to the boundary of Jl

take more iterations to diverge, increasing the iteration

count increases the visible detail of the set. The implica-
tion here is that infinite iterations are required to render

the full detail of the set. However, as no methods for dis-
playing anything of infinite detail exist, a high but finite

iteration count is sufficient for all practical purposes.

33 An orbit occurs when the sequence of z,s oscillates between
several constant values; the term may be used to describe the
behavior of a point on a fractal that neither converges or diverges,
always moving and never straying from its path.

&

Figure 12: A rendering of the Mandelbrot set. The contiguous blue shape
at the center is the Mandelbrot set, and the pink bands outside
of it show the detail resolved with each successive iteration,
starting with the large black circle of radius 2, the one-iteration
approximation of the Mandelbrot set

5.3 Julia Sets

Julia sets are very similar to the Mandelbrot set, with
two notable differences:

. Whereas the Mandelbrot set are defined in terms of an

z, = zﬁ_l + ¢, Julia sets are defined in terms of z, =

f(z,_1), where f(z)is a complex rational function.B4

. Whereas the Mandelbrot set is defined in terms of a ¢

that varies across the complex plane and a z that stays
at a constant 0, Julia sets are defined in terms of a z,
that varies across the complex plane and a c that is kept
constant across the whole render. In this way, the Man-
delbrot set is a visualization of all the possible quadratic

Julia sets for z, = z2 _ +c.
n n—1

Julia sets are seen in figures [I3 and [[§, smoothly col-

34 A function f(x) is rational if it can be written in the form of
f(x) = P(x)/Q(x), where P(x) and Q(x) are two arbitrary poly-
nomials, where a polynomial is a function consisting of the mul-
tiplication, addition, subtraction, and integer exponentiation of
variables and real numbers.
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|1z,

0 25

n

Figure 13: The regular 8-state orbit of z,,s in the Mandelbrot set for ¢ =
—0.023077195 + 0.999033603i

|2,

0 2,000

Figure14: The series of z,s for ¢ = 0.25161410494239694 —
0.0001816770978022922i converges to |z, | =~ 0.5...

ored by escape time — the number of iterations a point

takes to diverge past the bounding radius (2 for the Man-
delbrot set, usually ~ 30 for Julia sets). Note that the

fractal seen in figure [[7 is not a Julia set. Also note that

Julia sets are radially symmetrical proportional to the

degree of f(z).

6 IC the Light

I C the Light is abespoke, open-source ray marcher writ-
ten in c9g by the author. We will examine the inner
workings of I C the Light from the perspectives of de-
pendencies, program flow, and its render model.

6.1 Dependencies

I C the Light’s ¢ header files have a dependency hier-
archy; figure [[§ shows which headers include which;
main.c is compiled and includes main.h, which then in-
cludes every other file in the project.

Figure 16: Julia set for f(z) = z> + ¢, ¢ = —0.70176 + —0.3842i

6.2 Zones and Modules

I C the Light is roughly divisible into three main zones,
each composed of modules that support the program it-
self; infrastructure, arithmetic, and raster. Each module
is composed of one .c / .h pair, and can depend on other
modules.

6.2.1 Infrastructure Zone

The infrastructure zone supports the development and
base operations of I C the Light, and includes global
variables, diagnostic logging, bitmasking flag opera-
tions, and common functions useful to many different
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‘1%’

L

Figure 17: Not a Julia set: f(z) = Vsinhz2 + ¢, ¢ = 0.064 + 0.122i,
rendered about (1.67,0.59). f(z) is not a rational function, so
this rendering is, despite its beauty, not a Julia set.

modules.

common.c contains functions and definitions common to
all the modules in I C the Light. Examples include def-
initions for various z-related constants,B3 random inte-
ger functions, an approximation for sin @, and several
functions for dealing with floats: linear interpolation,
minimum / maximum functions, and a function (scale())
for mapping 7 € [iyinsimax] = 7 € [0min» Omax ]-BIB2
The actual calculation of #’ from 7 is:
n—i
Timon + Opin

l’l,=

(7)

35 72,2z, 7, 7/2, and 7/4
36 Floating-point arithmetic only approximates the real numbers,
so classifying scale() as injective, surjective, or bijective would
be somewhat pointless. However, if Ai < Ao (that is,
[imin> imax]) 1S @ smaller range than [o,;,, 0nax]), scale() func-
tions as injective. If Ai > Ao, scale() functions as surjective,
and if Ai = Ao, scale() is a bijective mapping (probably —
floating-point arithmetic is notoriously unreliable and these state-
ments should be taken with a grain of salt).

37 Note that the notation n’ simply indicates that n’ is a value re-
lated to n, as opposed to a derivative of n.

-— main.h

— 1icthelight.h

= Infrastructure zone
- globals.h
- logging.h
- common.h
+ flags.h

= Math zone
- vector.h
- quaternion.h
- complex.h
-+ color.h

=> Raster zone
- ppm.h
- plot.h

Figure 18: I C the Light’s header dependency tree

common.c also contains functions for searching *argv[]

for given strings to locate option / value pairs, and func-
tions for finding the minima / maxima / average of float

arrays.

Logging.c contains a single function,
initializelogfile(), to initialize FILE *logfile for
writing.

A global flag variable is used to pass options to cus-
tomize I C the Light’s behavior. To support this, a set
of constants B0 through B15 are defined for masking
(which are then aliased to a higher-level option defini-
tion like CONVERT_IMMEDIATELY or USER_QUATERNION). Then,
two macro functions are defined:

#define FLAG(F) (flags & F)
#define FLAGSET(F) flags = (flags | F)

FLAG(F) for checking if a flag is set via a bitwise AND, and
FLAGSET(F) for setting a flag by combining flags and the
user-supplied flag F via a bitwise OR.

Although I C the Light never required the removal of a
flag, such a function would be easy to implement:

#define FLAGUNSET(F) flags = (flags ™ F)
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Lm T % 0,
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+ +
n n

Figure 19: Diagram of linear map [imins imax] = [Omin> Omax]

6.2.2 Arithmetic Zone

The arithmetic zone consists of all the tools to perform
math with vectors, colors, complex numbers, and quater-
nions.

quaternion.c contains the definition of a quaternion data-
type as a four-tuple of floats (r for the real component,
and a, b, and c for the imaginary i, j, and k compo-
nentsBY) and associated arithmetic functions.

The most complex (and unintuitive) of these are multi-
plication and squaring. Mathematically, the product of
two quaternions x and y may be defined as follows, with

x, representing the real component of x, x; representing

the i-component of x, and so on.

XY = X V=XV =XV~ X Vi
+ (Y +X Y, +XYe—X gy )i
+ (XY =X i+ Xy +x, ;)]
+ (o ytx Y =Xy Xy, )k

®)

vector.c contains functions for operating on two- and
three-dimensional vectors. Functions for operating on
2D vectors are postfixed with a “2,” and functions for
operating on 3D vectors are postfixed with a “3.” Func-
tions that operate on a vector with a scalar are postfixed

38 In retrospect, this seems fairly nonsensical, given that the imag-
inary components already had one-letter names.

with an “s.” For example, mult2() multiplies two 2D vec-
tors together, and mult2s() multiplies a 2D vector with a
scalar.

For the most part, vector.c is filled with unremarkable
arithmetic. However, there are a few notable functions
for the manipulation of vectors.

fromdirection3() generates a 3-vector U from a magni-
tude m, an angle « in the xy plane, and an angle f in the
yz plane.

v, =mcosfsin a

vy, =mcosf cos a (9)

v, =msinf

color.c contains the definition of a struct rgbcolor and
functions for manipulating and converting colors. Func-
tions for averaging colors, linearly interpolating colors,
shifting hues, adding colors, and converting colors to
and from unsigned 24—bit integers (in 0xrrggbb format).
Future versions of I C the Light may contain an alpha
channel as well.

complex.c contains the definition of a complex number
type as a two-tuple, functions for complex arithmetic,
and functions for computing the Mandelbrot set. Al-
though the point-testing and distance functions for the
Mandelbrot set may be better categorized in distance.c,
the 2D Mandelbrot set is not rendered anywhere within
the main branches of I C the Light — however, a branch
from I C the Light’s 2D ages is still (somewhat) main-
tained, which utilizes the Mandelbrot functions.

6.2.3 Raster Zone

The raster zone contains raster operations: raster sur-
face types, flood-filling surfaces, image output, pixel
plotting, and so on.

ppm.c contains writeppm() for outputting images (as un-
signed integer arrays) to portable pixel-map images, the
simplest possible format. Following a simple width /
height / type header, a literal listing of the colors delim-
ited by spaces (rrggbb rrggbb rrgghbb...) composes up a
.ppm image. Although ppms are massive in comparison

39 In practice, 32-bit, but the highest 8-bits aren’t utilized.
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to a more reasonable format like .png B9 integrating the
whole png specification would be difficult®! and out of
the scope of the project. Instead, shelling out to Im-
ageMagick for conversion is enabled via an option or
through make convert.

plot.c contains two significant functions: getpixel()
and plot (), for getting and setting pixels in a surface.

Ultimately, the code isn’t that complex,® boiling down
to

(Cunsigned int *)screen->pixels)
[x + y * screen->w] = color;

but it’s a useful and critical abstraction in the backbone
of I C the Light’s graphical output.

6.3 Program Flow

6.3.1 Function Call Hierarchy

main()
— searchargs()
— handleevents ()
— saveframe()
— render()
= (assorted vector functions)
=> (assorted color functions)
= (assorted array, summing functions)

= de()
- distancejulia()

=> blinnphong()
- getnormal ()

6.3.2 Render Flow

First, constants and variables are initialized.

40 Portable network graphics, supposedly pronounced “ping”
(Adler, M., Boutell, T., Brunschen, C. et al. [1996]. PNG
(Portable Network Graphics) Specification. W3C)

41 bid]

42 If you’re not familiar with c or pointers, this may be safely ig-
nored.

Memory is allocated for float values[]andint coordsl[],
which both have the same cardinality as the output
surface. values stores raw outputs from the render,
pre-coloring; it can be a combination of illumination
(from the Blinn-Phong function), step-count, distance,
or some other model. Because values are stored with
no pre-processing, the minima and maxima of values
can be calculated and used later to determine image
exposure. coords stores the locations of the set coordi-
nates in values, which is to say values[i] corresponds to
screen[coords[i1]. This strange layout is used to prevent
null values skewing exposure calculations.

The viewport is calculated from four values: a focal

length f = float focallength, which determines the

perspective of the viewport (how “zoomed in” the im-
age is, and how close to parallel parallel lines appear
as in an output image), an offset vec3 viewport_ofs to

the center of the viewport that determines the camera’s

position in space, and ¥,, = viewport_width and 0, =

viewport_height unit vectors, which determine the view-
port’s aspect ratio and rotation. Because 7, and 7,

are both arbitrary 3-vectors, any rotation of the view-
port can (and must) be described through the rotation of
these vectors. An interesting (and largely unexplored by
the author) consequence of this is that the camera could

be, if desired, a parallelogram or of an entirely different
aspect ratio as the screen.

Rays are shot from the camera, a point constructed by
moving perpendicularly backwards from the plane con-
structed from the two viewport vectors by distance f
through points on the rectangle constructed from the
two viewport vectors.

Perhaps more simply,

¢ = f(l_;w 1 l_;h) + ﬁoffset (10)

Where ¢ represents the camera, f the focal length, and
U,, L U, a unit vector perpendicular to o, and 7.

If the user has not specified a quaternion constant to ren-
der, a constant is generated by setting the four quater-
nion components to random values from —1 to 1.

With initial setup completed, rendering may begin. The
following process is repeated for every pixel in the
screen where 1 or y represents the y-coordinate of the
pixel currently being rendered and j or x represents its x-
coordinate. w and h will represent the width and height
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Figure 20: Diagram of the camera’s construction

of the screen, respectively.

First, the distance and t = totaldistance counters are
reset to 0. Next, scale() maps x € [0,w] — x' €
[=1/2,1/2] and y € [0, h] = ' € [—1/2,1/2]. This is so
that viewport_ofs represents the center, rather than the
top-left point on the viewport, making positioning the
camera simpler and more intuitive. The ray’s origin, the
first sample position, is then calculated as

- /= 53 -
0 =X Uy +y Un + Uoffset (II)

Essentially, a coordinate (x,y) is mapped from the
screen onto its equivalent position ray_orig = 6 in space
on the viewport for arbitrary viewport locations, widths,
and heights, as seen in figure R1].

Uofs

Figure 21: A head-on view of the viewport, showing the location of the
ray’s origin ¢ in terms of x” and

In addition, a directional unit vector 7 is calculated as
0

—_— (12)
)

Then, with the ray setup complete, the actual distance
estimation process may be started with a sampling posi-
tion s, starting at s, = d. In more general terms, s, may
be defined as

S, =5,_1 +*D(,_;) (13)

or in practice
S, =047t (14)

where ¢ represents the total distance from o marched in
nsteps (t = X2 D(5))-

A smattering of render-wide constants will now become
relevant. First, ¢, an upper bound on the maximum dis-
tance travelled before 5, is considered to have escaped
from the scene (a bounding volume® on the scene).

Also relevant is €, a bound on the maximum value of
D(5,) such that 5, € § — in other words, 5, is consid-
ered to be a point in the set of points making up the scene
of object(s) to be rendered. In reality, 5, will not be in
the scene, but for an arbitrarily small e the approxima-
tion of the boundary points of § will become arbitrarily
close to the actual set of the boundary points of §S.

Finally, we define a constant scaling factor k as the por-
tion of the unbounding volume defined by an n-sphere
of radius D(5s,) about s, to be outside of 8. Although
a true distance-estimating function would yield a per-
fect distance between a point and the scene, our prac-
tical functions will only approximate the ideal function
(but become arbitrarily accurate as the sample position
approaches the boundary of §). As such, it is salient
to only consider some portion of radius kD(5,) to be a
valid unbounding volume about s,. Reasonable values
of k are between 0.5 and 0.8.

If D(5,,) < e, the point is considered part of 8, a shading
model is applied (I C the Light uses Blinn-Phong), and
we move on to the next ray. If D(s,) > o, the ray is
abandoned for the opposite reason (it is considered that
5, will never approach 8).

43 Not to be confused with an unbounding volume.
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6.3.3 Quaternion Julia Set Distance Estimate

Within the estimate, we let 5, = p, for simplicity.

First, we initialize two quaternion variables, g and ¢’,
the running derivative of g:

q0 :ﬁx +ﬁyi+ﬁzj+0k (15)
g =1
We may therefore define recursive definitions for their

n-th iteration, using the definition of the complex Julia
set and the chain rule of derivatives

G, =q._ +c (16)

/

_ /
4, = 2qn—lqn—l

Hopefully, these definitions look somewhat familiar —
save for g (for quaternion) being a quaternion rather
than a complex number# denoted by z.

Then, we check if
Jlim g, |l > 4 (17)

If, after a reasonable N iterations, g hasn’t diverged, we
estimate the distance D(p) as

gl log 4]l
d=-——<=1 (18)
2]l¢'|

The derivation of this equation is found in [[he Science

#  Apparently, because complex numbers are written in the form
x + yi, z was chosen simply for being the next letter in the
alphabet.] An alternate explanation for the convention of nam-
ing complex numbers z was posited by Tim Hanson, who ob-
served that “[u]nlike statistics and probability, complex anal-
ysis is boring, especially contour integrals. When I used
to do my complex analysis homework in graduate school I
would often fall asleep with my head on the desk and snore:

¢ >
277777 Z Z 77 Z

Meha, M. (2016). Why are complex numbers denoted by z? Re-
trieved from quora.com/Why - are- complex- numbers- denoted-
by-z/answer/Mecofe-Mehd

g Hanson, T. (2016). Why are complex numbers denoted by z? Re-
trieved from guora.com/Why-are-complex-numbers-denoted-
by-z/answer/11m-Hanson-4

of Fractal Images®8, p. 192.

Next, the point s, = 0 + #d is passed to the shader.

6.4 Shading

I C the Light uses the Blinn-Phong shading model, an
equation that determines how brightly lit a point is.

I=i,+ L-N +(N-H)*“ (19)
N——— N——
specular diffuse

Where [ is the light intensity at a point, i, is the intensity
of the ambient light, H is a normalized vector halfway
between the direction of the light L and the direction of
the camera, N is the normal vector at the point, and « is
a shininess constant, determining how glossy the object
appears — a higher a creates a glossier surface.

Essentially, the Blinn-Phong model states that how
brightly lit a surface is corresponds to how directly it’s
facing the light (as the dot product L - N maximises
when the angle 6 between the two vectors is 0).

For multiple lights, this equation is repeated and the il-
lumination intensities are summed together, and for a

more granularly controlled light constant modifiers can

be added to determine the intensity of each of the light’s

components (specular and diffuse).

6.5 Conclusion of I C the Light’s functional-
ity

I C the Light is a fully-developed ray marcher capable
of rendering quaternion Julia set fractals. However, it
has several notable limitations: it can’t export trans-
parent images or render multiple lights, colored lights,
shadows, reflections, or shading. Although these lim-
itations would make I C the Light useless in many con-
texts (e.g. for animated movies or video games), remem-
ber that I C the Light’s primary purpose is to visualize
quaternion Julia sets, a purpose it completes admirably
— reflections, colored lighting, and shadows aren’t nec-

45 Barnsley, M. F,, Devaney, R. L., Fischer, Y., Mandelbrot, B. B.,
McGuire, M., Peitgen, H.-O., ..., and Voss, R. F. (1988). The
Science of Fractal Images. New York, NY, USA: Springer-
Verlag New York, Inc.


quora.com/Why-are-complex-numbers-denoted-by-z/answer/Mecofe-Meha
quora.com/Why-are-complex-numbers-denoted-by-z/answer/Mecofe-Meha
quora.com/Why-are-complex-numbers-denoted-by-z/answer/Tim-Hanson-4
quora.com/Why-are-complex-numbers-denoted-by-z/answer/Tim-Hanson-4
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essary to visualize these sets, just an added decoration.

7 Discussion

Perhaps more of I C the Light’s value is in what it taught
me rather than its functionality. Even within the ray
marchers, I C the Light is not an outlier in any way —
it’s not quite as fast as WebGL-enabled marchers like
those on Iiiigo Quilez’s Shadertoy® and it lacks the ver-
satility, power, and user-friendly aspects of programs
like Krzysztof Marczak’s Mandelbulber. &2

So what, then, is I C the Light’s value? Before I set

out to create I C the Light, I knew very little about frac-
tals.® On the way, I learned an enormous amount about

fractals and mathematics — everything from RGB matrix
transforms to shift the hue of a color to the formal def-
inition of a Julia set to the history of quaternions and

the history of fractals to things as simple as the multi-
plication of complex numbers. By creating software to

do exactly what I required, I ended up with a product

that is both perfect for me and imparted a much deeper

understanding of the subject matter than research alone

would have provided. If you’ve enjoyed this paper and

the renders I’ve included, I implore you: Strike out at

the world, go yonder and create your own!

8 Further Reading

This paper’s bibliography contains many excellent pa-
pers and books which I highly suggest reading or at least
skimming, covering a wide range of mathematical and
computational concepts. Many are ground-breaking pa-
pers in their fields, and all are high-quality research.
However, reading dense academic papers does rarely a
passion make, and fields notorious for their inaccessibil-
ity are even more worthy of a potential reader’s wariness.
As such, this author suggests some of the following ma-
terials for the discerning reader looking to expand their

46 shadertoy.com
47 mandelbulber.com

48 I mean, I thought 1 knew a lot about fractals. They have been
a passion of mine for a long time, but I've only ventured into
their creation rather recently. It turns out it’s a lot easier than I
thought! (Well, for simple 2D fractals at least — I can’t pretend
coding I C the Light wasn’t a challenge.) Dunning-Kruger?

knowledge of ray marching or even make their own ray
marcher!E

Syntopia’s Mikael Hvidtfeldt Christensen presents Dis-
fance Estimated 3D Fractals, an eight-part series of blog
posts detailing the theory of distance estimation — this
is the post that made me realize creating a ray marcher
is something I could do. goo.gl/ahxqTV

Ifigo Quilez provides a list of dozens of working,
proven distance estimator functions, reference imple-
mentation included, in his article Modeling with Dis-
fance Functions. If the reader finds themself making
a ray marcher, they should make use of this invaluable
resource. g00.£gL/evfUSh

Or maybe the reader is less interested in geometric prim-
itives and more in the swirly whipped-cream structures

of quaternion Julia sets — and who could blame them?
In that case, they should read Paul Bourke’s introduc-
tion to quaternion arithmetic and quaternion Julia sets.

baulbourke.net/fractals/quatiulia

I also recommend reading Keenan Crane’s paper Ra)

[racing Quaternion Julia Sets on the GPU, a delightful

open source and mostly-well-commented program that

can elucidate some of the critical details that Hart et. al.
leave as an exercise to the reader. goo.gLl/r3eNin

9 Acknowledgments

Wow! Thanks for reading the whole paper!

10 Variable and Notation Reference

10.1 Notation

-

A vector of arbitrary dimensions. The ar-
row, not the letter, indicates that 0 is a vec-

tor.
[lz]| The magnitude or absolute value of a vec-

tor u. If i is n-dimensional,

(20)

49 Step one is to give it a cool name, preferably with a pun!
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Capital script letters indicate that a vari-

able represents a set of points.

alb A vector perpendicular to both @ and b.
Also written as @ X b

0 A unit or direction vector of magnitude 1.

A,B,C...  Aspecial set, such as the integers (Z). Usu-
ally a set of numbers (or, more generally,
numerical objects, a definition that can be
extended to include n-tuples). Contrast
with o, B, 6..., which always refer to sets
of points.
R The set of real numbers. Includes all the
rational numbers (of form »/q, p,q € Z)

as well as roots and transcendentals.
C The set of complex numbers. Includes the

set of real numbers R and the set of num-
bers ni, Vn € R,i = y/—1.
xX€EYy X is in y or x is a member of y.

10.2 Variables

¢ Camera position vector, the location rays are
“shot” from.
f Camera focal length. Describes how “zoomed

in” the render is.

D(p) Distance estimator. Estimates the distance to
§ from point p.

€ A threshold for considering a point s, to be an
element of §. D(s5,) <e¢ = 5, € 8. Note
that considering 5, to be an element of S does
not imply that 5, is actually a member of § —
just that it approximates the boundary of § to
a precision of e.

k The portion of the unbounding volume defined
by an n-sphere of radius D(5),) about 5, consid-
ered to be outside of §. Distance estimators
often over-estimate the distance bound, so it
is salient to only trust some portion of radius
kD(s,) to be considered truly outside of 8

J The set of points in the Mandelbrot set.

Ql

The ray origin, where the rays are shot from in
direction 7. 6 = 5

Ray direction. Describes the direction an indi-
vidual ray is shot in. Unit vector (||F] = 1).
The set of points in the scene to be rendered.

~>

An upper bound on the distance of the scene
from the origin. Vs € §, ¢ # s

1

The n-th sample position. Represents p in
D(p).
t The sum of all the distance estimates.

]

Ut Position vector describing the location of the
viewport’s center.

w»Up  Viewport width and height vectors, describing
the horizontal or vertical center lines of the
viewport.

w, h Screen width and height, in pixels.

1
1

<

X,y Horizontal and vertical location of the pixel be
ing rendered.

x,y Number describing the horizontal or vertical
offset of the ray origin from the viewport cen
ter Jyseec- Both have values between —1/2 and

1/2.
11 Glossary

DE — Distance estimate. An estimate on the distance
from a point to the closest point in a scene.

Float — Floating-point number. A basic data-type that
approximates a real number. Available in a variety of
bits for various levels of accuracy.

Module — A small piece of the program that performs
a single, designated task, such as vector arithmetic or
image output.

Ray-based renderer — A program that renders images
by locating intersections of rays.

Ray tracer — A ray-based renderer that finds the inter-
section between a ray and a scene by solving a discrete
equation in O(1) time.

Ray marcher — A ray-based renderer that finds the in-
tersection between a ray and a scene by stepping smaller
distances along the ray.

Scene — The collection of objects that compose a phys-
ical environment. Generally refers to the union of all
objects in a render.

Zone — A collection of program modules that perform
a general set of tasks.
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